NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  oddnn Unicode version

Theorem oddnn 4508
Description: An odd finite cardinal is a finite cardinal. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
oddnn Oddfin Nn

Proof of Theorem oddnn
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2359 . . . . . 6 1c 1c
21rexbidv 2636 . . . . 5 Nn 1c Nn 1c
3 neeq1 2525 . . . . 5
42, 3anbi12d 691 . . . 4 Nn 1c Nn 1c
5 df-oddfin 4446 . . . 4 Oddfin Nn 1c
64, 5elab2g 2988 . . 3 Oddfin Oddfin Nn 1c
76ibi 232 . 2 Oddfin Nn 1c
8 nncaddccl 4420 . . . . . 6 Nn Nn Nn
98anidms 626 . . . . 5 Nn Nn
10 peano2 4404 . . . . 5 Nn 1c Nn
11 eleq1a 2422 . . . . 5 1c Nn 1c Nn
129, 10, 113syl 18 . . . 4 Nn 1c Nn
1312rexlimiv 2733 . . 3 Nn 1c Nn
1413adantr 451 . 2 Nn 1c Nn
157, 14syl 15 1 Oddfin Nn
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642   wcel 1710   wne 2517  wrex 2616  c0 3551  1cc1c 4135   Nn cnnc 4374   cplc 4376   Oddfin coddfin 4438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-0c 4378  df-addc 4379  df-nnc 4380  df-oddfin 4446
This theorem is referenced by:  evenoddnnnul  4515
  Copyright terms: Public domain W3C validator