| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > exists2 | Unicode version | ||
| Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| exists2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfeu1 2214 | 
. . . . . 6
 | |
| 2 | nfa1 1788 | 
. . . . . 6
 | |
| 3 | exists1 2293 | 
. . . . . . 7
 | |
| 4 | ax16 2045 | 
. . . . . . 7
 | |
| 5 | 3, 4 | sylbi 187 | 
. . . . . 6
 | 
| 6 | 1, 2, 5 | exlimd 1806 | 
. . . . 5
 | 
| 7 | 6 | com12 27 | 
. . . 4
 | 
| 8 | alex 1572 | 
. . . 4
 | |
| 9 | 7, 8 | syl6ib 217 | 
. . 3
 | 
| 10 | 9 | con2d 107 | 
. 2
 | 
| 11 | 10 | imp 418 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |