New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exists2 | GIF version |
Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
exists2 | ⊢ ((∃xφ ∧ ∃x ¬ φ) → ¬ ∃!x x = x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2214 | . . . . . 6 ⊢ Ⅎx∃!x x = x | |
2 | nfa1 1788 | . . . . . 6 ⊢ Ⅎx∀xφ | |
3 | exists1 2293 | . . . . . . 7 ⊢ (∃!x x = x ↔ ∀x x = y) | |
4 | ax16 2045 | . . . . . . 7 ⊢ (∀x x = y → (φ → ∀xφ)) | |
5 | 3, 4 | sylbi 187 | . . . . . 6 ⊢ (∃!x x = x → (φ → ∀xφ)) |
6 | 1, 2, 5 | exlimd 1806 | . . . . 5 ⊢ (∃!x x = x → (∃xφ → ∀xφ)) |
7 | 6 | com12 27 | . . . 4 ⊢ (∃xφ → (∃!x x = x → ∀xφ)) |
8 | alex 1572 | . . . 4 ⊢ (∀xφ ↔ ¬ ∃x ¬ φ) | |
9 | 7, 8 | syl6ib 217 | . . 3 ⊢ (∃xφ → (∃!x x = x → ¬ ∃x ¬ φ)) |
10 | 9 | con2d 107 | . 2 ⊢ (∃xφ → (∃x ¬ φ → ¬ ∃!x x = x)) |
11 | 10 | imp 418 | 1 ⊢ ((∃xφ ∧ ∃x ¬ φ) → ¬ ∃!x x = x) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃!weu 2204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-eu 2208 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |