New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl6ib | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl6ib.1 | |
syl6ib.2 |
Ref | Expression |
---|---|
syl6ib |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ib.1 | . 2 | |
2 | syl6ib.2 | . . 3 | |
3 | 2 | biimpi 186 | . 2 |
4 | 1, 3 | syl6 29 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr3g 260 exp4a 589 mtord 641 19.23hOLD 1820 ax12olem6 1932 cbvexd 2009 ax15 2021 2eu3 2286 exists2 2294 necon2bd 2566 necon2d 2567 necon4ad 2578 necon4d 2580 necon1bd 2585 spcimgft 2931 eqsbc2 3104 reupick 3540 evenodddisj 4517 sfinltfin 4536 vfin1cltv 4548 dmcosseq 4974 iss 5001 xp11 5057 ssrnres 5060 opelf 5236 mapsn 6027 |
Copyright terms: Public domain | W3C validator |