New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iineq1 | Unicode version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iineq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2807 | . . 3 | |
2 | 1 | abbidv 2467 | . 2 |
3 | df-iin 3972 | . 2 | |
4 | df-iin 3972 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wceq 1642 wcel 1710 cab 2339 wral 2614 ciin 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 df-iin 3972 |
This theorem is referenced by: iinrab2 4029 riin0 4039 |
Copyright terms: Public domain | W3C validator |