New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > raleq | Unicode version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2489 | . 2 | |
2 | nfcv 2489 | . 2 | |
3 | 1, 2 | raleqf 2803 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wceq 1642 wral 2614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ral 2619 |
This theorem is referenced by: raleqi 2811 raleqdv 2813 raleqbi1dv 2815 sbralie 2848 r19.2zb 3640 inteq 3929 iineq1 3983 ncfinraise 4481 nnpweq 4523 fncnv 5158 isoeq4 5485 trd 5921 frd 5922 extd 5923 symd 5924 trrd 5925 refrd 5926 refd 5927 antird 5928 antid 5929 connexrd 5930 connexd 5931 iserd 5942 spacind 6287 |
Copyright terms: Public domain | W3C validator |