New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iineq1 | GIF version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iineq1 | ⊢ (A = B → ∩x ∈ A C = ∩x ∈ B C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2808 | . . 3 ⊢ (A = B → (∀x ∈ A y ∈ C ↔ ∀x ∈ B y ∈ C)) | |
2 | 1 | abbidv 2468 | . 2 ⊢ (A = B → {y ∣ ∀x ∈ A y ∈ C} = {y ∣ ∀x ∈ B y ∈ C}) |
3 | df-iin 3973 | . 2 ⊢ ∩x ∈ A C = {y ∣ ∀x ∈ A y ∈ C} | |
4 | df-iin 3973 | . 2 ⊢ ∩x ∈ B C = {y ∣ ∀x ∈ B y ∈ C} | |
5 | 2, 3, 4 | 3eqtr4g 2410 | 1 ⊢ (A = B → ∩x ∈ A C = ∩x ∈ B C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 ∀wral 2615 ∩ciin 3971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-iin 3973 |
This theorem is referenced by: iinrab2 4030 riin0 4040 |
Copyright terms: Public domain | W3C validator |