NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eluni2 Unicode version

Theorem eluni2 3896
Description: Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
eluni2
Distinct variable groups:   ,   ,

Proof of Theorem eluni2
StepHypRef Expression
1 exancom 1586 . 2
2 eluni 3895 . 2
3 df-rex 2621 . 2
41, 2, 33bitr4i 268 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358  wex 1541   wcel 1710  wrex 2616  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-uni 3893
This theorem is referenced by:  uni0b  3917  intssuni  3949  iuncom4  3977  dfuni3  4316  eqpw1uni  4331  elfin  4421  cnvuni  4896  chfnrn  5400
  Copyright terms: Public domain W3C validator