New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ssrdv | Unicode version |
Description: Deduction rule based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
ssrdv.1 |
Ref | Expression |
---|---|
ssrdv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrdv.1 | . . 3 | |
2 | 1 | alrimiv 1631 | . 2 |
3 | dfss2 3263 | . 2 | |
4 | 2, 3 | sylibr 203 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wal 1540 wcel 1710 wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sscon 3401 ssdif 3402 unss1 3433 ssrin 3481 eq0rdv 3586 uniss 3913 intss1 3942 intmin 3947 intssuni 3949 iunss1 3981 iinss1 3982 ss2iun 3985 ssiun 4009 ssiun2 4010 iinss 4018 iinss2 4019 sspwb 4119 pwadjoin 4120 phi11lem1 4596 phi011lem1 4599 ssrel 4845 dmss 4907 dmcosseq 4974 ssrnres 5060 fun11iun 5306 chfnrn 5400 ffnfv 5428 enadjlem1 6060 enmap2lem5 6068 enmap1lem5 6074 enprmaplem5 6081 enprmaplem6 6082 |
Copyright terms: Public domain | W3C validator |