NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  intssuni GIF version

Theorem intssuni 3949
Description: The intersection of a nonempty set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssuni (AA A)

Proof of Theorem intssuni
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.2z 3640 . . . 4 ((A y A x y) → y A x y)
21ex 423 . . 3 (A → (y A x yy A x y))
3 vex 2863 . . . 4 x V
43elint2 3934 . . 3 (x Ay A x y)
5 eluni2 3896 . . 3 (x Ay A x y)
62, 4, 53imtr4g 261 . 2 (A → (x Ax A))
76ssrdv 3279 1 (AA A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wcel 1710  wne 2517  wral 2615  wrex 2616   wss 3258  c0 3551  cuni 3892  cint 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-uni 3893  df-int 3928
This theorem is referenced by:  unissint  3951  intssuni2  3952
  Copyright terms: Public domain W3C validator