New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  intun Unicode version

Theorem intun 3958
 Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun

Proof of Theorem intun
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1593 . . . 4
2 elun 3220 . . . . . . 7
32imbi1i 315 . . . . . 6
4 jaob 758 . . . . . 6
53, 4bitri 240 . . . . 5
65albii 1566 . . . 4
7 vex 2862 . . . . . 6
87elint 3932 . . . . 5
97elint 3932 . . . . 5
108, 9anbi12i 678 . . . 4
111, 6, 103bitr4i 268 . . 3
127elint 3932 . . 3
13 elin 3219 . . 3
1411, 12, 133bitr4i 268 . 2
1514eqriv 2350 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wo 357   wa 358  wal 1540   wceq 1642   wcel 1710   cun 3207   cin 3208  cint 3926 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-in 3213  df-un 3214  df-int 3927 This theorem is referenced by:  intunsn  3965
 Copyright terms: Public domain W3C validator