Step | Hyp | Ref
| Expression |
1 | | 19.26 1593 |
. . . 4
⊢ (∀y((y ∈ A → x ∈ y) ∧ (y ∈ B →
x ∈
y)) ↔ (∀y(y ∈ A → x ∈ y) ∧ ∀y(y ∈ B →
x ∈
y))) |
2 | | elun 3221 |
. . . . . . 7
⊢ (y ∈ (A ∪ B)
↔ (y ∈ A ∨ y ∈ B)) |
3 | 2 | imbi1i 315 |
. . . . . 6
⊢ ((y ∈ (A ∪ B)
→ x ∈ y) ↔
((y ∈
A ∨
y ∈
B) → x ∈ y)) |
4 | | jaob 758 |
. . . . . 6
⊢ (((y ∈ A ∨ y ∈ B) → x
∈ y)
↔ ((y ∈ A →
x ∈
y) ∧
(y ∈
B → x ∈ y))) |
5 | 3, 4 | bitri 240 |
. . . . 5
⊢ ((y ∈ (A ∪ B)
→ x ∈ y) ↔
((y ∈
A → x ∈ y) ∧ (y ∈ B → x ∈ y))) |
6 | 5 | albii 1566 |
. . . 4
⊢ (∀y(y ∈ (A ∪ B)
→ x ∈ y) ↔
∀y((y ∈ A →
x ∈
y) ∧
(y ∈
B → x ∈ y))) |
7 | | vex 2863 |
. . . . . 6
⊢ x ∈
V |
8 | 7 | elint 3933 |
. . . . 5
⊢ (x ∈ ∩A ↔ ∀y(y ∈ A → x ∈ y)) |
9 | 7 | elint 3933 |
. . . . 5
⊢ (x ∈ ∩B ↔ ∀y(y ∈ B → x ∈ y)) |
10 | 8, 9 | anbi12i 678 |
. . . 4
⊢ ((x ∈ ∩A ∧ x ∈ ∩B) ↔ (∀y(y ∈ A → x ∈ y) ∧ ∀y(y ∈ B →
x ∈
y))) |
11 | 1, 6, 10 | 3bitr4i 268 |
. . 3
⊢ (∀y(y ∈ (A ∪ B)
→ x ∈ y) ↔
(x ∈
∩A ∧ x ∈ ∩B)) |
12 | 7 | elint 3933 |
. . 3
⊢ (x ∈ ∩(A ∪ B) ↔ ∀y(y ∈ (A ∪ B)
→ x ∈ y)) |
13 | | elin 3220 |
. . 3
⊢ (x ∈ (∩A ∩ ∩B) ↔ (x ∈ ∩A ∧ x ∈ ∩B)) |
14 | 11, 12, 13 | 3bitr4i 268 |
. 2
⊢ (x ∈ ∩(A ∪ B) ↔ x
∈ (∩A ∩ ∩B)) |
15 | 14 | eqriv 2350 |
1
⊢ ∩(A ∪ B) = (∩A ∩ ∩B) |