| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > iota2d | Unicode version | ||
| Description: A condition that allows
us to represent "the unique element such that
|
| Ref | Expression |
|---|---|
| iota2df.1 |
|
| iota2df.2 |
|
| iota2df.3 |
|
| Ref | Expression |
|---|---|
| iota2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota2df.1 |
. 2
| |
| 2 | iota2df.2 |
. 2
| |
| 3 | iota2df.3 |
. 2
| |
| 4 | nfv 1619 |
. 2
| |
| 5 | nfvd 1620 |
. 2
| |
| 6 | nfcvd 2491 |
. 2
| |
| 7 | 1, 2, 3, 4, 5, 6 | iota2df 4366 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |