New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iota2d | GIF version |
Description: A condition that allows us to represent "the unique element such that φ " with a class expression A. (Contributed by NM, 30-Dec-2014.) |
Ref | Expression |
---|---|
iota2df.1 | ⊢ (φ → B ∈ V) |
iota2df.2 | ⊢ (φ → ∃!xψ) |
iota2df.3 | ⊢ ((φ ∧ x = B) → (ψ ↔ χ)) |
Ref | Expression |
---|---|
iota2d | ⊢ (φ → (χ ↔ (℩xψ) = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iota2df.1 | . 2 ⊢ (φ → B ∈ V) | |
2 | iota2df.2 | . 2 ⊢ (φ → ∃!xψ) | |
3 | iota2df.3 | . 2 ⊢ ((φ ∧ x = B) → (ψ ↔ χ)) | |
4 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
5 | nfvd 1620 | . 2 ⊢ (φ → Ⅎxχ) | |
6 | nfcvd 2491 | . 2 ⊢ (φ → ℲxB) | |
7 | 1, 2, 3, 4, 5, 6 | iota2df 4366 | 1 ⊢ (φ → (χ ↔ (℩xψ) = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |