NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  isof1o Unicode version

Theorem isof1o 5489
Description: An isomorphism is a one-to-one onto function. (Contributed by set.mm contributors, 27-Apr-2004.)
Assertion
Ref Expression
isof1o

Proof of Theorem isof1o
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4797 . 2
21simplbi 446 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wral 2615   class class class wbr 4640  wf1o 4781  cfv 4782   wiso 4783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-iso 4797
This theorem is referenced by:  isomin  5497  isoini  5498  isoini2  5499
  Copyright terms: Public domain W3C validator