New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > isof1o | GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by set.mm contributors, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (H Isom R, S (A, B) → H:A–1-1-onto→B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iso 4797 | . 2 ⊢ (H Isom R, S (A, B) ↔ (H:A–1-1-onto→B ∧ ∀x ∈ A ∀y ∈ A (xRy ↔ (H ‘x)S(H ‘y)))) | |
2 | 1 | simplbi 446 | 1 ⊢ (H Isom R, S (A, B) → H:A–1-1-onto→B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wral 2615 class class class wbr 4640 –1-1-onto→wf1o 4781 ‘cfv 4782 Isom wiso 4783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-iso 4797 |
This theorem is referenced by: isomin 5497 isoini 5498 isoini2 5499 |
Copyright terms: Public domain | W3C validator |