NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  isof1o GIF version

Theorem isof1o 5489
Description: An isomorphism is a one-to-one onto function. (Contributed by set.mm contributors, 27-Apr-2004.)
Assertion
Ref Expression
isof1o (H Isom R, S (A, B) → H:A1-1-ontoB)

Proof of Theorem isof1o
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iso 4797 . 2 (H Isom R, S (A, B) ↔ (H:A1-1-ontoB x A y A (xRy ↔ (Hx)S(Hy))))
21simplbi 446 1 (H Isom R, S (A, B) → H:A1-1-ontoB)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176  wral 2615   class class class wbr 4640  1-1-ontowf1o 4781  cfv 4782   Isom wiso 4783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-iso 4797
This theorem is referenced by:  isomin  5497  isoini  5498  isoini2  5499
  Copyright terms: Public domain W3C validator