HomeHome New Foundations Explorer
Theorem List (p. 55 of 64)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  NFE Home Page  >  Theorem List Contents       This page: Page List

Theorem List for New Foundations Explorer - 5401-5500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfunfvop 5401 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by set.mm contributors, 14-Oct-1996.)
 
Theoremfunfvbrb 5402 Two ways to say that is in the domain of . (Contributed by Mario Carneiro, 1-May-2014.)
 
Theoremfvimacnvi 5403 A member of a preimage is a function value argument. (Contributed by set.mm contributors, 4-May-2007.)
 
Theoremfvimacnv 5404 The argument of a function value belongs to the preimage of any class containing the function value. (Contributed by Raph Levien, 20-Nov-2006.) He remarks: "This proof is unsatisfying, because it seems to me that funimass2 5171 could probably be strengthened to a biconditional."
 
Theoremfunimass3 5405 A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by Raph Levien, 20-Nov-2006.) He remarks: "Likely this could be proved directly, and fvimacnv 5404 would be the special case of being a singleton, but it works this way round too."
 
Theoremfunimass5 5406* A subclass of a preimage in terms of function values. (Contributed by set.mm contributors, 15-May-2007.)
 
Theoremfunconstss 5407* Two ways of specifying that a function is constant on a subdomain. (Contributed by set.mm contributors, 8-Mar-2007.)
 
Theoremelpreima 5408 Membership in the preimage of a set under a function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoremunpreima 5409 Preimage of a union. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoreminpreima 5410 Preimage of an intersection. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoremrespreima 5411 The preimage of a restricted function. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoremfimacnv 5412 The preimage of the codomain of a mapping is the mapping's domain. (Contributed by FL, 25-Jan-2007.)
 
Theoremfnopfv 5413 Ordered pair with function value. Part of Theorem 4.3(i) of [Monk1] p. 41. (Contributed by set.mm contributors, 30-Sep-2004.)
 
Theoremfvelrn 5414 A function's value belongs to its range. (Contributed by set.mm contributors, 14-Oct-1996.)
 
Theoremfnfvelrn 5415 A function's value belongs to its range. (Contributed by set.mm contributors, 15-Oct-1996.)
 
Theoremffvelrn 5416 A function's value belongs to its codomain. (Contributed by set.mm contributors, 12-Aug-1999.)
 
Theoremffvelrni 5417 A function's value belongs to its codomain. (Contributed by set.mm contributors, 6-Apr-2005.)
   =>   
 
Theoremfnasrn 5418* A function expressed as the range of another function. (Contributed by Mario Carneiro, 22-Jun-2013.)
 
Theoremf0cli 5419 Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013.)
   &       =>   
 
Theoremdff2 5420 Alternate definition of a mapping. (Contributed by set.mm contributors, 14-Nov-2007.)
 
Theoremdff3 5421* Alternate definition of a mapping. (Contributed by set.mm contributors, 20-Mar-2007.)
 
Theoremdff4 5422* Alternate definition of a mapping. (Contributed by set.mm contributors, 20-Mar-2007.)
 
Theoremdffo3 5423* An onto mapping expressed in terms of function values. (Contributed by set.mm contributors, 29-Oct-2006.)
 
Theoremdffo4 5424* Alternate definition of an onto mapping. (Contributed by set.mm contributors, 20-Mar-2007.)
 
Theoremdffo5 5425* Alternate definition of an onto mapping. (Contributed by set.mm contributors, 20-Mar-2007.)
 
Theoremfoelrn 5426* Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
 
Theoremfoco2 5427 If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
 
Theoremffnfv 5428* A function maps to a class to which all values belong. (Contributed by NM, 3-Dec-2003.)
 
Theoremffnfvf 5429 A function maps to a class to which all values belong. This version of ffnfv 5428 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
 F/_   &     F/_   &     F/_   =>   
 
Theoremfnfvrnss 5430* An upper bound for range determined by function values. (Contributed by set.mm contributors, 8-Oct-2004.)
 
Theoremfopabfv 5431* Representation of a mapping in terms of its values. (Contributed by set.mm contributors, 21-Feb-2004.)
 
Theoremffvresb 5432* A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
 
Theoremfsn 5433 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
   &       =>   
 
Theoremfsng 5434 A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by set.mm contributors, 26-Oct-2012.)
 
Theoremfsn2 5435 A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by set.mm contributors, 19-May-2004.)
   =>   
 
Theoremxpsn 5436 The cross product of two singletons. (Contributed by set.mm contributors, 4-Nov-2006.)
   &       =>   
 
Theoremressnop0 5437 If is not in , then the restriction of a singleton of to is null. (Contributed by Scott Fenton, 15-Apr-2011.)
 
Theoremfpr 5438 A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.) (The proof was shortened by Andrew Salmon, 22-Oct-2011.)
   &       &       &       =>   
 
Theoremfnressn 5439 A function restricted to a singleton. (Contributed by set.mm contributors, 9-Oct-2004.)
 
Theoremfressnfv 5440 The value of a function restricted to a singleton. (Contributed by set.mm contributors, 9-Oct-2004.)
 
Theoremfvconst 5441 The value of a constant function. (Contributed by set.mm contributors, 30-May-1999.)
 
Theoremfopabsn 5442* The singleton of an ordered pair expressed as an ordered pair class abstraction. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 6-Jun-2006.) (Revised by set.mm contributors, 22-Oct-2011.)
   &       =>   
 
Theoremfvi 5443 The value of the identity function. (Contributed by set.mm contributors, 1-May-2004.)
 
Theoremfvresi 5444 The value of a restricted identity function. (Contributed by set.mm contributors, 19-May-2004.)
 
Theoremfvunsn 5445 Remove an ordered pair not participating in a function value. (Contributed by set.mm contributors, 1-Oct-2013.) (Revised by Mario Carneiro, 28-May-2014.)
 
Theoremfvsn 5446 The value of a singleton of an ordered pair is the second member. (Contributed by set.mm contributors, 12-Aug-1994.)
   &       =>   
 
Theoremfvsng 5447 The value of a singleton of an ordered pair is the second member. (Contributed by set.mm contributors, 26-Oct-2012.)
 
Theoremfvsnun1 5448 The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5449. (Contributed by set.mm contributors, 23-Sep-2007.)
   &       &       =>   
 
Theoremfvsnun2 5449 The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 5448. (Contributed by set.mm contributors, 23-Sep-2007.)
   &       &       =>   
 
Theoremfvpr1 5450 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
   &       =>   
 
Theoremfvpr2 5451 The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010.)
   &       =>   
 
Theoremfvconst2g 5452 The value of a constant function. (Contributed by set.mm contributors, 20-Aug-2005.)
 
Theoremfconst2g 5453 A constant function expressed as a cross product. (Contributed by set.mm contributors, 27-Nov-2007.)
 
Theoremfvconst2 5454 The value of a constant function. (Contributed by set.mm contributors, 16-Apr-2005.)
   =>   
 
Theoremfconst2 5455 A constant function expressed as a cross product. (Contributed by set.mm contributors, 20-Aug-1999.)
   =>   
 
Theoremfconst5 5456 Two ways to express that a function is constant. (Contributed by set.mm contributors, 27-Nov-2007.)
 
Theoremfconstfv 5457* A constant function expressed in terms of its functionality, domain, and value. See also fconst2 5455. (Contributed by NM, 27-Aug-2004.)
 
Theoremfconst3 5458 Two ways to express a constant function. (Contributed by set.mm contributors, 15-Mar-2007.)
 
Theoremfconst4 5459 Two ways to express a constant function. (Contributed by set.mm contributors, 8-Mar-2007.)
 
Theoremfunfvima 5460 A function's value in a preimage belongs to the image. (Contributed by set.mm contributors, 23-Sep-2003.)
 
Theoremfunfvima2 5461 A function's value in an included preimage belongs to the image. (Contributed by set.mm contributors, 3-Feb-1997.)
 
Theoremfunfvima3 5462 A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by set.mm contributors, 23-Mar-2004.)
 
Theoremfvclss 5463* Upper bound for the class of values of a class. (Contributed by NM, 9-Nov-1995.)
 
Theoremabrexco 5464* Composition of two image maps and . (Contributed by set.mm contributors, 27-May-2013.)
   &       =>   
 
Theoremimaiun 5465* The image of an indexed union is the indexed union of the images. (Contributed by Mario Carneiro, 18-Jun-2014.)
 
Theoremimauni 5466* The image of a union is the indexed union of the images. Theorem 3K(a) of [Enderton] p. 50. (The proof was shortened by Mario Carneiro, 18-Jun-2014.) (Contributed by set.mm contributors, 9-Aug-2004.) (Revised by set.mm contributors, 18-Jun-2014.)
 
Theoremfniunfv 5467* The indexed union of a function's values is the union of its range. Compare Definition 5.4 of [Monk1] p. 50. (Contributed by set.mm contributors, 27-Sep-2004.)
 
Theoremfuniunfv 5468* The indexed union of a function's values is the union of its image under the index class.

Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to , the theorem can be proved without this dependency. (Contributed by set.mm contributors, 26-Mar-2006.)

 
Theoremfuniunfvf 5469* The indexed union of a function's values is the union of its image under the index class. This version of funiunfv 5468 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.) (Revised by David Abernethy, 15-Apr-2013.)
 F/_   =>   
 
Theoremeluniima 5470* Membership in the union of an image of a function. (Contributed by set.mm contributors, 28-Sep-2006.)
 
Theoremelunirn 5471* Membership in the union of the range of a function. (Contributed by set.mm contributors, 24-Sep-2006.)
 
Theoremdff13 5472* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by set.mm contributors, 29-Oct-1996.)
 
Theoremdff13f 5473* A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of [Monk1] p. 43. (Contributed by NM, 31-Jul-2003.)
 F/_   &     F/_   =>   
 
Theoremf1fveq 5474 Equality of function values for a one-to-one function. (Contributed by set.mm contributors, 11-Feb-1997.)
 
Theoremf1elima 5475 Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
 
Theoremdff1o6 5476* A one-to-one onto function in terms of function values. (Contributed by set.mm contributors, 29-Mar-2008.)
 
Theoremf1ocnvfv1 5477 The converse value of the value of a one-to-one onto function. (Contributed by set.mm contributors, 20-May-2004.)
 
Theoremf1ocnvfv2 5478 The value of the converse value of a one-to-one onto function. (Contributed by set.mm contributors, 20-May-2004.)
 
Theoremf1ocnvfv 5479 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
 
Theoremf1ocnvfvb 5480 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by set.mm contributors, 20-May-2004.) (Revised by set.mm contributors, 9-Aug-2006.)
 
Theoremf1ofveu 5481* There is one domain element for each value of a one-to-one onto function. (Contributed by set.mm contributors, 26-May-2006.)
 
Theoremf1ocnvdm 5482 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by set.mm contributors, 26-May-2006.)
 
Theoremisoeq1 5483 Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
 
Theoremisoeq2 5484 Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
 
Theoremisoeq3 5485 Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
 
Theoremisoeq4 5486 Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
 
Theoremisoeq5 5487 Equality theorem for isomorphisms. (Contributed by set.mm contributors, 17-May-2004.)
 
Theoremnfiso 5488 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
 F/_   &     F/_   &     F/_   &     F/_   &     F/_   =>     F/
 
Theoremisof1o 5489 An isomorphism is a one-to-one onto function. (Contributed by set.mm contributors, 27-Apr-2004.)
 
Theoremisorel 5490 An isomorphism connects binary relations via its function values. (Contributed by set.mm contributors, 27-Apr-2004.)
 
Theoremisoid 5491 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 27-Apr-2004.)
 
Theoremisocnv 5492 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 27-Apr-2004.)
 
Theoremisocnv2 5493 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
 
Theoremisores2 5494 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 
Theoremisores1 5495 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
 
Theoremisotr 5496 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 27-Apr-2004.)
 
Theoremisomin 5497 Isomorphisms preserve minimal elements. Note that is Takeuti and Zaring's idiom for the initial segment . Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 19-Apr-2004.)
 
Theoremisoini 5498 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by set.mm contributors, 20-Apr-2004.)
 
Theoremisoini2 5499 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
   &       =>   
 
Theoremf1oiso 5500* Any one-to-one onto function determines an isomorphism with an induced relation . Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by set.mm contributors, 30-Apr-2004.)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6339
  Copyright terms: Public domain < Previous  Next >