NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  isoini2 Unicode version

Theorem isoini2 5499
Description: Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
Hypotheses
Ref Expression
isoini2.1
isoini2.2
Assertion
Ref Expression
isoini2

Proof of Theorem isoini2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5489 . . . . . 6
2 f1of1 5287 . . . . . 6
31, 2syl 15 . . . . 5
43adantr 451 . . . 4
5 isoini2.1 . . . . 5
6 inss1 3476 . . . . 5
75, 6eqsstri 3302 . . . 4
8 f1ores 5301 . . . 4
94, 7, 8sylancl 643 . . 3
10 isoini 5498 . . . . 5
115imaeq2i 4941 . . . . 5
12 isoini2.2 . . . . 5
1310, 11, 123eqtr4g 2410 . . . 4
14 f1oeq3 5284 . . . 4
1513, 14syl 15 . . 3
169, 15mpbid 201 . 2
17 df-iso 4797 . . . . . . 7
1817simprbi 450 . . . . . 6
1918adantr 451 . . . . 5
20 ssralv 3331 . . . . . 6
2120ralimdv 2694 . . . . 5
227, 19, 21mpsyl 59 . . . 4
23 ssralv 3331 . . . 4
247, 22, 23mpsyl 59 . . 3
25 fvres 5343 . . . . . . 7
26 fvres 5343 . . . . . . 7
2725, 26breqan12d 4655 . . . . . 6
2827bibi2d 309 . . . . 5
2928ralbidva 2631 . . . 4
3029ralbiia 2647 . . 3
3124, 30sylibr 203 . 2
32 df-iso 4797 . 2
3316, 31, 32sylanbrc 645 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  wral 2615   cin 3209   wss 3258  csn 3738   class class class wbr 4640  cima 4723  ccnv 4772   cres 4775  wf1 4779  wf1o 4781  cfv 4782   wiso 4783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-iso 4797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator