New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtbid | Unicode version |
Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
mtbid.min | |
mtbid.maj |
Ref | Expression |
---|---|
mtbid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbid.min | . 2 | |
2 | mtbid.maj | . . 3 | |
3 | 2 | biimprd 214 | . 2 |
4 | 1, 3 | mtod 168 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: sylnib 295 eqneltrrd 2447 neleqtrd 2448 eueq3 3011 nnadjoinpw 4521 nnc3n3p2 6279 |
Copyright terms: Public domain | W3C validator |