New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > biimprd | Unicode version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 |
Ref | Expression |
---|---|
biimprd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 | |
2 | biimprd.1 | . 2 | |
3 | 1, 2 | syl5ibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl6bir 220 mpbird 223 sylibrd 225 sylbird 226 con4bid 284 mtbid 291 mtbii 293 imbi1d 308 biimpar 471 prlem1 928 spfw 1691 spw 1694 cbvalw 1701 cbvalvw 1702 alcomiw 1704 nfimd 1808 ax10lem2 1937 ax10lem4 1941 dral1 1965 cbval 1984 speiv 2000 ax16i 2046 a16gALT 2049 sbequi 2059 sb9i 2094 dral1-o 2154 a16g-o 2186 cleqh 2450 pm13.18 2589 rspcimdv 2957 rspcedv 2960 moi2 3018 moi 3020 sspsstr 3375 unsneqsn 3888 opkth1g 4131 peano5 4410 ssfin 4471 tfincl 4493 sucoddeven 4512 eventfin 4518 oddtfin 4519 spfininduct 4541 vfinspeqtncv 4554 iss 5001 tz6.12c 5348 fveqres 5356 fvun1 5380 fvopab3ig 5388 dffo4 5424 fconst5 5456 ndmovordi 5622 clos1induct 5881 enprmaplem3 6079 enprmaplem5 6081 leconnnc 6219 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |