![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 |
![]() ![]() ![]() |
mtbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbir |
![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 |
. 2
![]() ![]() ![]() | |
2 | mtbir.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomi 193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbi 289 |
1
![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: fal 1322 nonconne 2523 nemtbir 2604 ru 3045 pssirr 3369 indifdir 3511 necompl 3544 noel 3554 npss0 3589 iun0 4022 0iun 4023 0nel1c 4159 0nelsuc 4400 nndisjeq 4429 addcnul1 4452 eqtfinrelk 4486 nulnnn 4556 0cnelphi 4597 dm0 4918 cnv0 5031 co02 5092 co01 5093 nfunv 5138 imadif 5171 fv01 5354 1p1e2c 6155 2p1e3c 6156 fnfreclem2 6318 |
Copyright terms: Public domain | W3C validator |