New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mtbir | Unicode version |
Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
Ref | Expression |
---|---|
mtbir.1 | |
mtbir.2 |
Ref | Expression |
---|---|
mtbir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbir.1 | . 2 | |
2 | mtbir.2 | . . 3 | |
3 | 2 | bicomi 193 | . 2 |
4 | 1, 3 | mtbi 289 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: fal 1322 nonconne 2524 nemtbir 2605 ru 3046 pssirr 3370 indifdir 3512 necompl 3545 noel 3555 npss0 3590 iun0 4023 0iun 4024 0nel1c 4160 0nelsuc 4401 nndisjeq 4430 addcnul1 4453 eqtfinrelk 4487 nulnnn 4557 0cnelphi 4598 dm0 4919 cnv0 5032 co02 5093 co01 5094 nfunv 5139 imadif 5172 fv01 5355 1p1e2c 6156 2p1e3c 6157 fnfreclem2 6319 |
Copyright terms: Public domain | W3C validator |