New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  nincompl Unicode version

Theorem nincompl 4072
 Description: Anti-intersection with complement. (Contributed by SF, 2-Jan-2018.)
Assertion
Ref Expression
nincompl &ncap ∼

Proof of Theorem nincompl
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqv 3565 . 2 &ncap ∼ &ncap ∼
2 pm3.24 852 . . 3
3 vex 2862 . . . . 5
43elnin 3224 . . . 4 &ncap ∼
53elcompl 3225 . . . . 5
65nanbi2i 1299 . . . 4
7 df-nan 1288 . . . 4
84, 6, 73bitri 262 . . 3 &ncap ∼
92, 8mpbir 200 . 2 &ncap ∼
101, 9mpgbir 1550 1 &ncap ∼
 Colors of variables: wff setvar class Syntax hints:   wn 3   wa 358   wnan 1287   wceq 1642   wcel 1710  cvv 2859   &ncap cnin 3204   ∼ ccompl 3205 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212 This theorem is referenced by:  incompl  4073  uncompl  4074
 Copyright terms: Public domain W3C validator