New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nincompl | Unicode version |
Description: Anti-intersection with complement. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nincompl | &ncap ∼ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3566 | . 2 &ncap ∼ &ncap ∼ | |
2 | pm3.24 852 | . . 3 | |
3 | vex 2863 | . . . . 5 | |
4 | 3 | elnin 3225 | . . . 4 &ncap ∼ ∼ |
5 | 3 | elcompl 3226 | . . . . 5 ∼ |
6 | 5 | nanbi2i 1299 | . . . 4 ∼ |
7 | df-nan 1288 | . . . 4 | |
8 | 4, 6, 7 | 3bitri 262 | . . 3 &ncap ∼ |
9 | 2, 8 | mpbir 200 | . 2 &ncap ∼ |
10 | 1, 9 | mpgbir 1550 | 1 &ncap ∼ |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wa 358 wnan 1287 wceq 1642 wcel 1710 cvv 2860 &ncap cnin 3205 ∼ ccompl 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 |
This theorem is referenced by: incompl 4074 uncompl 4075 |
Copyright terms: Public domain | W3C validator |