New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nincompl | GIF version |
Description: Anti-intersection with complement. (Contributed by SF, 2-Jan-2018.) |
Ref | Expression |
---|---|
nincompl | ⊢ (A ⩃ ∼ A) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqv 3566 | . 2 ⊢ ((A ⩃ ∼ A) = V ↔ ∀x x ∈ (A ⩃ ∼ A)) | |
2 | pm3.24 852 | . . 3 ⊢ ¬ (x ∈ A ∧ ¬ x ∈ A) | |
3 | vex 2863 | . . . . 5 ⊢ x ∈ V | |
4 | 3 | elnin 3225 | . . . 4 ⊢ (x ∈ (A ⩃ ∼ A) ↔ (x ∈ A ⊼ x ∈ ∼ A)) |
5 | 3 | elcompl 3226 | . . . . 5 ⊢ (x ∈ ∼ A ↔ ¬ x ∈ A) |
6 | 5 | nanbi2i 1299 | . . . 4 ⊢ ((x ∈ A ⊼ x ∈ ∼ A) ↔ (x ∈ A ⊼ ¬ x ∈ A)) |
7 | df-nan 1288 | . . . 4 ⊢ ((x ∈ A ⊼ ¬ x ∈ A) ↔ ¬ (x ∈ A ∧ ¬ x ∈ A)) | |
8 | 4, 6, 7 | 3bitri 262 | . . 3 ⊢ (x ∈ (A ⩃ ∼ A) ↔ ¬ (x ∈ A ∧ ¬ x ∈ A)) |
9 | 2, 8 | mpbir 200 | . 2 ⊢ x ∈ (A ⩃ ∼ A) |
10 | 1, 9 | mpgbir 1550 | 1 ⊢ (A ⩃ ∼ A) = V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 358 ⊼ wnan 1287 = wceq 1642 ∈ wcel 1710 Vcvv 2860 ⩃ cnin 3205 ∼ ccompl 3206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 |
This theorem is referenced by: incompl 4074 uncompl 4075 |
Copyright terms: Public domain | W3C validator |