New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pw111 | Unicode version |
Description: The unit power class operation is one-to-one. (Contributed by SF, 26-Feb-2015.) |
Ref | Expression |
---|---|
pw111 | 1 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 4112 | . . . . 5 | |
2 | eleq1 2413 | . . . . . 6 1 1 | |
3 | eleq1 2413 | . . . . . 6 1 1 | |
4 | 2, 3 | bibi12d 312 | . . . . 5 1 1 1 1 |
5 | 1, 4 | ceqsalv 2886 | . . . 4 1 1 1 1 |
6 | snelpw1 4147 | . . . . 5 1 | |
7 | snelpw1 4147 | . . . . 5 1 | |
8 | 6, 7 | bibi12i 306 | . . . 4 1 1 |
9 | 5, 8 | bitri 240 | . . 3 1 1 |
10 | 9 | albii 1566 | . 2 1 1 |
11 | pw1ss1c 4159 | . . . 4 1 1c | |
12 | pw1ss1c 4159 | . . . 4 1 1c | |
13 | ssofeq 4078 | . . . 4 1 1c 1 1c 1 1 1c 1 1 | |
14 | 11, 12, 13 | mp2an 653 | . . 3 1 1 1c 1 1 |
15 | df-ral 2620 | . . . 4 1c 1 1 1c 1 1 | |
16 | el1c 4140 | . . . . . . . 8 1c | |
17 | 16 | imbi1i 315 | . . . . . . 7 1c 1 1 1 1 |
18 | 19.23v 1891 | . . . . . . 7 1 1 1 1 | |
19 | 17, 18 | bitr4i 243 | . . . . . 6 1c 1 1 1 1 |
20 | 19 | albii 1566 | . . . . 5 1c 1 1 1 1 |
21 | alcom 1737 | . . . . 5 1 1 1 1 | |
22 | 20, 21 | bitri 240 | . . . 4 1c 1 1 1 1 |
23 | 15, 22 | bitri 240 | . . 3 1c 1 1 1 1 |
24 | 14, 23 | bitri 240 | . 2 1 1 1 1 |
25 | dfcleq 2347 | . 2 | |
26 | 10, 24, 25 | 3bitr4i 268 | 1 1 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wal 1540 wex 1541 wceq 1642 wcel 1710 wral 2615 wss 3258 csn 3738 1cc1c 4135 1 cpw1 4136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 |
This theorem is referenced by: pw1fnf1o 5856 |
Copyright terms: Public domain | W3C validator |