Step | Hyp | Ref
| Expression |
1 | | snex 4112 |
. . . . 5
⊢ {x} ∈
V |
2 | | eleq1 2413 |
. . . . . 6
⊢ (t = {x} →
(t ∈
℘1A ↔ {x}
∈ ℘1A)) |
3 | | eleq1 2413 |
. . . . . 6
⊢ (t = {x} →
(t ∈
℘1B ↔ {x}
∈ ℘1B)) |
4 | 2, 3 | bibi12d 312 |
. . . . 5
⊢ (t = {x} →
((t ∈
℘1A ↔ t ∈ ℘1B) ↔ ({x}
∈ ℘1A ↔ {x}
∈ ℘1B))) |
5 | 1, 4 | ceqsalv 2886 |
. . . 4
⊢ (∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B)) ↔ ({x}
∈ ℘1A ↔ {x}
∈ ℘1B)) |
6 | | snelpw1 4147 |
. . . . 5
⊢ ({x} ∈ ℘1A ↔ x ∈ A) |
7 | | snelpw1 4147 |
. . . . 5
⊢ ({x} ∈ ℘1B ↔ x ∈ B) |
8 | 6, 7 | bibi12i 306 |
. . . 4
⊢ (({x} ∈ ℘1A ↔ {x}
∈ ℘1B) ↔ (x
∈ A
↔ x ∈ B)) |
9 | 5, 8 | bitri 240 |
. . 3
⊢ (∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B)) ↔ (x
∈ A
↔ x ∈ B)) |
10 | 9 | albii 1566 |
. 2
⊢ (∀x∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B)) ↔ ∀x(x ∈ A ↔ x ∈ B)) |
11 | | pw1ss1c 4159 |
. . . 4
⊢ ℘1A ⊆
1c |
12 | | pw1ss1c 4159 |
. . . 4
⊢ ℘1B ⊆
1c |
13 | | ssofeq 4078 |
. . . 4
⊢ ((℘1A ⊆
1c ∧ ℘1B ⊆
1c) → (℘1A = ℘1B ↔ ∀t ∈ 1c (t ∈ ℘1A ↔ t ∈ ℘1B))) |
14 | 11, 12, 13 | mp2an 653 |
. . 3
⊢ (℘1A = ℘1B ↔ ∀t ∈ 1c (t ∈ ℘1A ↔ t ∈ ℘1B)) |
15 | | df-ral 2620 |
. . . 4
⊢ (∀t ∈ 1c (t ∈ ℘1A ↔ t ∈ ℘1B) ↔ ∀t(t ∈
1c → (t ∈ ℘1A ↔ t ∈ ℘1B))) |
16 | | el1c 4140 |
. . . . . . . 8
⊢ (t ∈
1c ↔ ∃x t = {x}) |
17 | 16 | imbi1i 315 |
. . . . . . 7
⊢ ((t ∈
1c → (t ∈ ℘1A ↔ t ∈ ℘1B)) ↔ (∃x t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
18 | | 19.23v 1891 |
. . . . . . 7
⊢ (∀x(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B)) ↔ (∃x t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
19 | 17, 18 | bitr4i 243 |
. . . . . 6
⊢ ((t ∈
1c → (t ∈ ℘1A ↔ t ∈ ℘1B)) ↔ ∀x(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
20 | 19 | albii 1566 |
. . . . 5
⊢ (∀t(t ∈
1c → (t ∈ ℘1A ↔ t ∈ ℘1B)) ↔ ∀t∀x(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
21 | | alcom 1737 |
. . . . 5
⊢ (∀t∀x(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B)) ↔ ∀x∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
22 | 20, 21 | bitri 240 |
. . . 4
⊢ (∀t(t ∈
1c → (t ∈ ℘1A ↔ t ∈ ℘1B)) ↔ ∀x∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
23 | 15, 22 | bitri 240 |
. . 3
⊢ (∀t ∈ 1c (t ∈ ℘1A ↔ t ∈ ℘1B) ↔ ∀x∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
24 | 14, 23 | bitri 240 |
. 2
⊢ (℘1A = ℘1B ↔ ∀x∀t(t = {x} →
(t ∈
℘1A ↔ t ∈ ℘1B))) |
25 | | dfcleq 2347 |
. 2
⊢ (A = B ↔
∀x(x ∈ A ↔
x ∈
B)) |
26 | 10, 24, 25 | 3bitr4i 268 |
1
⊢ (℘1A = ℘1B ↔ A =
B) |