NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwexg Unicode version

Theorem pwexg 4329
Description: The power class of a set is a set. (Contributed by SF, 21-Jan-2015.)
Assertion
Ref Expression
pwexg

Proof of Theorem pwexg
StepHypRef Expression
1 dfpw2 4328 . 2 Sk 1 k k1c
2 ssetkex 4295 . . . . 5 Sk
3 pw1exg 4303 . . . . . 6 1
4 vvex 4110 . . . . . 6
5 xpkexg 4289 . . . . . 6 1 1 k
63, 4, 5sylancl 643 . . . . 5 1 k
7 difexg 4103 . . . . 5 Sk 1 k Sk 1 k
82, 6, 7sylancr 644 . . . 4 Sk 1 k
9 1cex 4143 . . . 4 1c
10 imakexg 4300 . . . 4 Sk 1 k 1c Sk 1 k k1c
118, 9, 10sylancl 643 . . 3 Sk 1 k k1c
12 complexg 4100 . . 3 Sk 1 k k1c Sk 1 k k1c
1311, 12syl 15 . 2 Sk 1 k k1c
141, 13syl5eqel 2437 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wcel 1710  cvv 2860   ∼ ccompl 3206   cdif 3207  cpw 3723  1cc1c 4135  1 cpw1 4136   k cxpk 4175  kcimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  pwex  4330  pmex  6006  ltcpw1pwg  6203
  Copyright terms: Public domain W3C validator