| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > imakexg | Unicode version | ||
| Description: The image of a set under a set is a set. (Contributed by SF, 14-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| imakexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfimak2 4299 | 
. 2
 | |
| 2 | 1cex 4143 | 
. . . . . 6
 | |
| 3 | vvex 4110 | 
. . . . . 6
 | |
| 4 | 2, 3 | xpkex 4290 | 
. . . . 5
 | 
| 5 | 4 | complex 4105 | 
. . . 4
 | 
| 6 | xpkexg 4289 | 
. . . . . . 7
 | |
| 7 | 3, 6 | mpan2 652 | 
. . . . . 6
 | 
| 8 | inexg 4101 | 
. . . . . 6
 | |
| 9 | 7, 8 | sylan2 460 | 
. . . . 5
 | 
| 10 | complexg 4100 | 
. . . . 5
 | |
| 11 | sikexg 4297 | 
. . . . 5
 | |
| 12 | 9, 10, 11 | 3syl 18 | 
. . . 4
 | 
| 13 | unexg 4102 | 
. . . 4
 | |
| 14 | 5, 12, 13 | sylancr 644 | 
. . 3
 | 
| 15 | p6exg 4291 | 
. . 3
 | |
| 16 | complexg 4100 | 
. . 3
 | |
| 17 | 14, 15, 16 | 3syl 18 | 
. 2
 | 
| 18 | 1, 17 | syl5eqel 2437 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-si 4084 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-cnvk 4187 df-imak 4190 df-p6 4192 df-sik 4193 | 
| This theorem is referenced by: imakex 4301 pw1exg 4303 cokexg 4310 imagekexg 4312 uniexg 4317 intexg 4320 pwexg 4329 addcexg 4394 phiexg 4572 opexg 4588 proj1exg 4592 proj2exg 4593 imaexg 4747 coexg 4750 siexg 4753 | 
| Copyright terms: Public domain | W3C validator |