New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > raltpg | GIF version |
Description: Convert a quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) |
Ref | Expression |
---|---|
ralprg.1 | ⊢ (x = A → (φ ↔ ψ)) |
ralprg.2 | ⊢ (x = B → (φ ↔ χ)) |
raltpg.3 | ⊢ (x = C → (φ ↔ θ)) |
Ref | Expression |
---|---|
raltpg | ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (∀x ∈ {A, B, C}φ ↔ (ψ ∧ χ ∧ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralprg.1 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
2 | ralprg.2 | . . . . 5 ⊢ (x = B → (φ ↔ χ)) | |
3 | 1, 2 | ralprg 3776 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ W) → (∀x ∈ {A, B}φ ↔ (ψ ∧ χ))) |
4 | raltpg.3 | . . . . 5 ⊢ (x = C → (φ ↔ θ)) | |
5 | 4 | ralsng 3766 | . . . 4 ⊢ (C ∈ X → (∀x ∈ {C}φ ↔ θ)) |
6 | 3, 5 | bi2anan9 843 | . . 3 ⊢ (((A ∈ V ∧ B ∈ W) ∧ C ∈ X) → ((∀x ∈ {A, B}φ ∧ ∀x ∈ {C}φ) ↔ ((ψ ∧ χ) ∧ θ))) |
7 | 6 | 3impa 1146 | . 2 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → ((∀x ∈ {A, B}φ ∧ ∀x ∈ {C}φ) ↔ ((ψ ∧ χ) ∧ θ))) |
8 | df-tp 3744 | . . . 4 ⊢ {A, B, C} = ({A, B} ∪ {C}) | |
9 | 8 | raleqi 2812 | . . 3 ⊢ (∀x ∈ {A, B, C}φ ↔ ∀x ∈ ({A, B} ∪ {C})φ) |
10 | ralunb 3445 | . . 3 ⊢ (∀x ∈ ({A, B} ∪ {C})φ ↔ (∀x ∈ {A, B}φ ∧ ∀x ∈ {C}φ)) | |
11 | 9, 10 | bitri 240 | . 2 ⊢ (∀x ∈ {A, B, C}φ ↔ (∀x ∈ {A, B}φ ∧ ∀x ∈ {C}φ)) |
12 | df-3an 936 | . 2 ⊢ ((ψ ∧ χ ∧ θ) ↔ ((ψ ∧ χ) ∧ θ)) | |
13 | 7, 11, 12 | 3bitr4g 279 | 1 ⊢ ((A ∈ V ∧ B ∈ W ∧ C ∈ X) → (∀x ∈ {A, B, C}φ ↔ (ψ ∧ χ ∧ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2615 ∪ cun 3208 {csn 3738 {cpr 3739 {ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: raltp 3782 |
Copyright terms: Public domain | W3C validator |