New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reean | Unicode version |
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
Ref | Expression |
---|---|
reean.1 | |
reean.2 |
Ref | Expression |
---|---|
reean |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 797 | . . . 4 | |
2 | 1 | 2exbii 1583 | . . 3 |
3 | nfv 1619 | . . . . 5 | |
4 | reean.1 | . . . . 5 | |
5 | 3, 4 | nfan 1824 | . . . 4 |
6 | nfv 1619 | . . . . 5 | |
7 | reean.2 | . . . . 5 | |
8 | 6, 7 | nfan 1824 | . . . 4 |
9 | 5, 8 | eean 1912 | . . 3 |
10 | 2, 9 | bitri 240 | . 2 |
11 | r2ex 2653 | . 2 | |
12 | df-rex 2621 | . . 3 | |
13 | df-rex 2621 | . . 3 | |
14 | 12, 13 | anbi12i 678 | . 2 |
15 | 10, 11, 14 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wnf 1544 wcel 1710 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: reeanv 2779 |
Copyright terms: Public domain | W3C validator |