NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  reean Unicode version

Theorem reean 2778
Description: Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Hypotheses
Ref Expression
reean.1  F/
reean.2  F/
Assertion
Ref Expression
reean
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   (,)   ()   ()

Proof of Theorem reean
StepHypRef Expression
1 an4 797 . . . 4
212exbii 1583 . . 3
3 nfv 1619 . . . . 5  F/
4 reean.1 . . . . 5  F/
53, 4nfan 1824 . . . 4  F/
6 nfv 1619 . . . . 5  F/
7 reean.2 . . . . 5  F/
86, 7nfan 1824 . . . 4  F/
95, 8eean 1912 . . 3
102, 9bitri 240 . 2
11 r2ex 2653 . 2
12 df-rex 2621 . . 3
13 df-rex 2621 . . 3
1412, 13anbi12i 678 . 2
1510, 11, 143bitr4i 268 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wa 358  wex 1541   F/wnf 1544   wcel 1710  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  reeanv  2779
  Copyright terms: Public domain W3C validator