| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > r2ex | Unicode version | ||
| Description: Double restricted existential quantification. (Contributed by NM, 11-Nov-1995.) | 
| Ref | Expression | 
|---|---|
| r2ex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv 2490 | 
. 2
 | |
| 2 | 1 | r2exf 2651 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 | 
| This theorem is referenced by: reean 2778 elxpk2 4198 evenfinex 4504 oddfinex 4505 rnoprab2 5578 rnmpt2 5718 lecex 6116 mucnc 6132 | 
| Copyright terms: Public domain | W3C validator |