New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reiota2 | GIF version |
Description: A condition allowing us to represent "the unique element in A such that φ " with a class expression B. (Contributed by Scott Fenton, 7-Jan-2018.) |
Ref | Expression |
---|---|
reiota2.1 | ⊢ (x = B → (φ ↔ ψ)) |
Ref | Expression |
---|---|
reiota2 | ⊢ ((B ∈ A ∧ ∃!x ∈ A φ) → (ψ ↔ (℩x(x ∈ A ∧ φ)) = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . . 3 ⊢ ((B ∈ A ∧ ∃!x ∈ A φ) → B ∈ A) | |
2 | 1 | biantrurd 494 | . 2 ⊢ ((B ∈ A ∧ ∃!x ∈ A φ) → (ψ ↔ (B ∈ A ∧ ψ))) |
3 | df-reu 2622 | . . 3 ⊢ (∃!x ∈ A φ ↔ ∃!x(x ∈ A ∧ φ)) | |
4 | eleq1 2413 | . . . . 5 ⊢ (x = B → (x ∈ A ↔ B ∈ A)) | |
5 | reiota2.1 | . . . . 5 ⊢ (x = B → (φ ↔ ψ)) | |
6 | 4, 5 | anbi12d 691 | . . . 4 ⊢ (x = B → ((x ∈ A ∧ φ) ↔ (B ∈ A ∧ ψ))) |
7 | 6 | iota2 4368 | . . 3 ⊢ ((B ∈ A ∧ ∃!x(x ∈ A ∧ φ)) → ((B ∈ A ∧ ψ) ↔ (℩x(x ∈ A ∧ φ)) = B)) |
8 | 3, 7 | sylan2b 461 | . 2 ⊢ ((B ∈ A ∧ ∃!x ∈ A φ) → ((B ∈ A ∧ ψ) ↔ (℩x(x ∈ A ∧ φ)) = B)) |
9 | 2, 8 | bitrd 244 | 1 ⊢ ((B ∈ A ∧ ∃!x ∈ A φ) → (ψ ↔ (℩x(x ∈ A ∧ φ)) = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∃!weu 2204 ∃!wreu 2617 ℩cio 4338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-reu 2622 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 df-iota 4340 |
This theorem is referenced by: ncfinprop 4475 tfinprop 4490 eqtc 6162 |
Copyright terms: Public domain | W3C validator |