| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rexcomf | Unicode version | ||
| Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| ralcomf.1 | 
 | 
| ralcomf.2 | 
 | 
| Ref | Expression | 
|---|---|
| rexcomf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 437 | 
. . . . 5
 | |
| 2 | 1 | anbi1i 676 | 
. . . 4
 | 
| 3 | 2 | 2exbii 1583 | 
. . 3
 | 
| 4 | excom 1741 | 
. . 3
 | |
| 5 | 3, 4 | bitri 240 | 
. 2
 | 
| 6 | ralcomf.1 | 
. . 3
 | |
| 7 | 6 | r2exf 2651 | 
. 2
 | 
| 8 | ralcomf.2 | 
. . 3
 | |
| 9 | 8 | r2exf 2651 | 
. 2
 | 
| 10 | 5, 7, 9 | 3bitr4i 268 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 | 
| This theorem is referenced by: rexcom 2773 | 
| Copyright terms: Public domain | W3C validator |