New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexcomf | Unicode version |
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | |
ralcomf.2 |
Ref | Expression |
---|---|
rexcomf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . . . 5 | |
2 | 1 | anbi1i 676 | . . . 4 |
3 | 2 | 2exbii 1583 | . . 3 |
4 | excom 1741 | . . 3 | |
5 | 3, 4 | bitri 240 | . 2 |
6 | ralcomf.1 | . . 3 | |
7 | 6 | r2exf 2650 | . 2 |
8 | ralcomf.2 | . . 3 | |
9 | 8 | r2exf 2650 | . 2 |
10 | 5, 7, 9 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wcel 1710 wnfc 2476 wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 |
This theorem is referenced by: rexcom 2772 |
Copyright terms: Public domain | W3C validator |