NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  rexcom Unicode version

Theorem rexcom 2773
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
rexcom
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem rexcom
StepHypRef Expression
1 nfcv 2490 . 2  F/_
2 nfcv 2490 . 2  F/_
31, 2rexcomf 2771 1
Colors of variables: wff setvar class
Syntax hints:   wb 176  wrex 2616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621
This theorem is referenced by:  rexcom13  2774  rexcom4  2879  iuncom  3976  addccom  4407  ltfinex  4465  nnpw1ex  4485  evenodddisjlem1  4516  phialllem1  4617  xpiundi  4818  addcfnex  5825  crossex  5851  mucex  6134  ncspw1eu  6160  addlec  6209  nc0le1  6217  dflec3  6222
  Copyright terms: Public domain W3C validator