New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > r2exf | Unicode version |
Description: Double restricted existential quantification. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
r2alf.1 |
Ref | Expression |
---|---|
r2exf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2620 | . 2 | |
2 | r2alf.1 | . . . . . 6 | |
3 | 2 | nfcri 2483 | . . . . 5 |
4 | 3 | 19.42 1880 | . . . 4 |
5 | anass 630 | . . . . 5 | |
6 | 5 | exbii 1582 | . . . 4 |
7 | df-rex 2620 | . . . . 5 | |
8 | 7 | anbi2i 675 | . . . 4 |
9 | 4, 6, 8 | 3bitr4i 268 | . . 3 |
10 | 9 | exbii 1582 | . 2 |
11 | 1, 10 | bitr4i 243 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wcel 1710 wnfc 2476 wrex 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 |
This theorem is referenced by: r2ex 2652 rexcomf 2770 |
Copyright terms: Public domain | W3C validator |