New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexeqf | Unicode version |
Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
raleq1f.1 | |
raleq1f.2 |
Ref | Expression |
---|---|
rexeqf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1f.1 | . . . 4 | |
2 | raleq1f.2 | . . . 4 | |
3 | 1, 2 | nfeq 2497 | . . 3 |
4 | eleq2 2414 | . . . 4 | |
5 | 4 | anbi1d 685 | . . 3 |
6 | 3, 5 | exbid 1773 | . 2 |
7 | df-rex 2621 | . 2 | |
8 | df-rex 2621 | . 2 | |
9 | 6, 7, 8 | 3bitr4g 279 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wnfc 2477 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: rexeq 2809 |
Copyright terms: Public domain | W3C validator |