| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rexeqf | GIF version | ||
| Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| raleq1f.1 | ⊢ ℲxA |
| raleq1f.2 | ⊢ ℲxB |
| Ref | Expression |
|---|---|
| rexeqf | ⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1f.1 | . . . 4 ⊢ ℲxA | |
| 2 | raleq1f.2 | . . . 4 ⊢ ℲxB | |
| 3 | 1, 2 | nfeq 2497 | . . 3 ⊢ Ⅎx A = B |
| 4 | eleq2 2414 | . . . 4 ⊢ (A = B → (x ∈ A ↔ x ∈ B)) | |
| 5 | 4 | anbi1d 685 | . . 3 ⊢ (A = B → ((x ∈ A ∧ φ) ↔ (x ∈ B ∧ φ))) |
| 6 | 3, 5 | exbid 1773 | . 2 ⊢ (A = B → (∃x(x ∈ A ∧ φ) ↔ ∃x(x ∈ B ∧ φ))) |
| 7 | df-rex 2621 | . 2 ⊢ (∃x ∈ A φ ↔ ∃x(x ∈ A ∧ φ)) | |
| 8 | df-rex 2621 | . 2 ⊢ (∃x ∈ B φ ↔ ∃x(x ∈ B ∧ φ)) | |
| 9 | 6, 7, 8 | 3bitr4g 279 | 1 ⊢ (A = B → (∃x ∈ A φ ↔ ∃x ∈ B φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 ∃wrex 2616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
| This theorem is referenced by: rexeq 2809 |
| Copyright terms: Public domain | W3C validator |