New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexeq | Unicode version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
rexeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2490 | . 2 | |
2 | nfcv 2490 | . 2 | |
3 | 1, 2 | rexeqf 2805 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wceq 1642 wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 |
This theorem is referenced by: rexeqi 2813 rexeqdv 2815 rexeqbi1dv 2817 unieq 3901 xpkeq1 4199 xpkeq2 4200 imakeq2 4226 tfineq 4489 nnadjoin 4521 tfinnn 4535 imaeq2 4939 qseq1 5975 brlecg 6113 ovmuc 6131 tceq 6159 lec0cg 6199 sbth 6207 dflec3 6222 lenc 6224 |
Copyright terms: Public domain | W3C validator |