New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > reu6 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
Ref | Expression |
---|---|
reu6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2622 | . 2 | |
2 | 19.28v 1895 | . . . . 5 | |
3 | eleq1 2413 | . . . . . . . . . . . 12 | |
4 | sbequ12 1919 | . . . . . . . . . . . 12 | |
5 | 3, 4 | anbi12d 691 | . . . . . . . . . . 11 |
6 | eqeq1 2359 | . . . . . . . . . . 11 | |
7 | 5, 6 | bibi12d 312 | . . . . . . . . . 10 |
8 | eqid 2353 | . . . . . . . . . . . 12 | |
9 | 8 | tbt 333 | . . . . . . . . . . 11 |
10 | simpl 443 | . . . . . . . . . . 11 | |
11 | 9, 10 | sylbir 204 | . . . . . . . . . 10 |
12 | 7, 11 | syl6bi 219 | . . . . . . . . 9 |
13 | 12 | spimv 1990 | . . . . . . . 8 |
14 | bi1 178 | . . . . . . . . . . . 12 | |
15 | 14 | expdimp 426 | . . . . . . . . . . 11 |
16 | bi2 189 | . . . . . . . . . . . . 13 | |
17 | simpr 447 | . . . . . . . . . . . . 13 | |
18 | 16, 17 | syl6 29 | . . . . . . . . . . . 12 |
19 | 18 | adantr 451 | . . . . . . . . . . 11 |
20 | 15, 19 | impbid 183 | . . . . . . . . . 10 |
21 | 20 | ex 423 | . . . . . . . . 9 |
22 | 21 | sps 1754 | . . . . . . . 8 |
23 | 13, 22 | jca 518 | . . . . . . 7 |
24 | 23 | a5i 1789 | . . . . . 6 |
25 | bi1 178 | . . . . . . . . . . 11 | |
26 | 25 | imim2i 13 | . . . . . . . . . 10 |
27 | 26 | imp3a 420 | . . . . . . . . 9 |
28 | 27 | adantl 452 | . . . . . . . 8 |
29 | eleq1a 2422 | . . . . . . . . . . . 12 | |
30 | 29 | adantr 451 | . . . . . . . . . . 11 |
31 | 30 | imp 418 | . . . . . . . . . 10 |
32 | bi2 189 | . . . . . . . . . . . . . 14 | |
33 | 32 | imim2i 13 | . . . . . . . . . . . . 13 |
34 | 33 | com23 72 | . . . . . . . . . . . 12 |
35 | 34 | imp 418 | . . . . . . . . . . 11 |
36 | 35 | adantll 694 | . . . . . . . . . 10 |
37 | 31, 36 | jcai 522 | . . . . . . . . 9 |
38 | 37 | ex 423 | . . . . . . . 8 |
39 | 28, 38 | impbid 183 | . . . . . . 7 |
40 | 39 | alimi 1559 | . . . . . 6 |
41 | 24, 40 | impbii 180 | . . . . 5 |
42 | df-ral 2620 | . . . . . 6 | |
43 | 42 | anbi2i 675 | . . . . 5 |
44 | 2, 41, 43 | 3bitr4i 268 | . . . 4 |
45 | 44 | exbii 1582 | . . 3 |
46 | df-eu 2208 | . . 3 | |
47 | df-rex 2621 | . . 3 | |
48 | 45, 46, 47 | 3bitr4i 268 | . 2 |
49 | 1, 48 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wal 1540 wex 1541 wceq 1642 wsb 1648 wcel 1710 weu 2204 wral 2615 wrex 2616 wreu 2617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 |
This theorem is referenced by: reu3 3027 reu6i 3028 reu8 3033 |
Copyright terms: Public domain | W3C validator |