| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > reu6 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) | 
| Ref | Expression | 
|---|---|
| reu6 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-reu 2622 | 
. 2
 | |
| 2 | 19.28v 1895 | 
. . . . 5
 | |
| 3 | eleq1 2413 | 
. . . . . . . . . . . 12
 | |
| 4 | sbequ12 1919 | 
. . . . . . . . . . . 12
 | |
| 5 | 3, 4 | anbi12d 691 | 
. . . . . . . . . . 11
 | 
| 6 | eqeq1 2359 | 
. . . . . . . . . . 11
 | |
| 7 | 5, 6 | bibi12d 312 | 
. . . . . . . . . 10
 | 
| 8 | eqid 2353 | 
. . . . . . . . . . . 12
 | |
| 9 | 8 | tbt 333 | 
. . . . . . . . . . 11
 | 
| 10 | simpl 443 | 
. . . . . . . . . . 11
 | |
| 11 | 9, 10 | sylbir 204 | 
. . . . . . . . . 10
 | 
| 12 | 7, 11 | syl6bi 219 | 
. . . . . . . . 9
 | 
| 13 | 12 | spimv 1990 | 
. . . . . . . 8
 | 
| 14 | bi1 178 | 
. . . . . . . . . . . 12
 | |
| 15 | 14 | expdimp 426 | 
. . . . . . . . . . 11
 | 
| 16 | bi2 189 | 
. . . . . . . . . . . . 13
 | |
| 17 | simpr 447 | 
. . . . . . . . . . . . 13
 | |
| 18 | 16, 17 | syl6 29 | 
. . . . . . . . . . . 12
 | 
| 19 | 18 | adantr 451 | 
. . . . . . . . . . 11
 | 
| 20 | 15, 19 | impbid 183 | 
. . . . . . . . . 10
 | 
| 21 | 20 | ex 423 | 
. . . . . . . . 9
 | 
| 22 | 21 | sps 1754 | 
. . . . . . . 8
 | 
| 23 | 13, 22 | jca 518 | 
. . . . . . 7
 | 
| 24 | 23 | a5i 1789 | 
. . . . . 6
 | 
| 25 | bi1 178 | 
. . . . . . . . . . 11
 | |
| 26 | 25 | imim2i 13 | 
. . . . . . . . . 10
 | 
| 27 | 26 | imp3a 420 | 
. . . . . . . . 9
 | 
| 28 | 27 | adantl 452 | 
. . . . . . . 8
 | 
| 29 | eleq1a 2422 | 
. . . . . . . . . . . 12
 | |
| 30 | 29 | adantr 451 | 
. . . . . . . . . . 11
 | 
| 31 | 30 | imp 418 | 
. . . . . . . . . 10
 | 
| 32 | bi2 189 | 
. . . . . . . . . . . . . 14
 | |
| 33 | 32 | imim2i 13 | 
. . . . . . . . . . . . 13
 | 
| 34 | 33 | com23 72 | 
. . . . . . . . . . . 12
 | 
| 35 | 34 | imp 418 | 
. . . . . . . . . . 11
 | 
| 36 | 35 | adantll 694 | 
. . . . . . . . . 10
 | 
| 37 | 31, 36 | jcai 522 | 
. . . . . . . . 9
 | 
| 38 | 37 | ex 423 | 
. . . . . . . 8
 | 
| 39 | 28, 38 | impbid 183 | 
. . . . . . 7
 | 
| 40 | 39 | alimi 1559 | 
. . . . . 6
 | 
| 41 | 24, 40 | impbii 180 | 
. . . . 5
 | 
| 42 | df-ral 2620 | 
. . . . . 6
 | |
| 43 | 42 | anbi2i 675 | 
. . . . 5
 | 
| 44 | 2, 41, 43 | 3bitr4i 268 | 
. . . 4
 | 
| 45 | 44 | exbii 1582 | 
. . 3
 | 
| 46 | df-eu 2208 | 
. . 3
 | |
| 47 | df-rex 2621 | 
. . 3
 | |
| 48 | 45, 46, 47 | 3bitr4i 268 | 
. 2
 | 
| 49 | 1, 48 | bitri 240 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 | 
| This theorem is referenced by: reu3 3027 reu6i 3028 reu8 3033 | 
| Copyright terms: Public domain | W3C validator |