| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > reu6 | Unicode version | ||
| Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
| Ref | Expression |
|---|---|
| reu6 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-reu 2622 |
. 2
| |
| 2 | 19.28v 1895 |
. . . . 5
| |
| 3 | eleq1 2413 |
. . . . . . . . . . . 12
| |
| 4 | sbequ12 1919 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | anbi12d 691 |
. . . . . . . . . . 11
|
| 6 | eqeq1 2359 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | bibi12d 312 |
. . . . . . . . . 10
|
| 8 | eqid 2353 |
. . . . . . . . . . . 12
| |
| 9 | 8 | tbt 333 |
. . . . . . . . . . 11
|
| 10 | simpl 443 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | sylbir 204 |
. . . . . . . . . 10
|
| 12 | 7, 11 | syl6bi 219 |
. . . . . . . . 9
|
| 13 | 12 | spimv 1990 |
. . . . . . . 8
|
| 14 | bi1 178 |
. . . . . . . . . . . 12
| |
| 15 | 14 | expdimp 426 |
. . . . . . . . . . 11
|
| 16 | bi2 189 |
. . . . . . . . . . . . 13
| |
| 17 | simpr 447 |
. . . . . . . . . . . . 13
| |
| 18 | 16, 17 | syl6 29 |
. . . . . . . . . . . 12
|
| 19 | 18 | adantr 451 |
. . . . . . . . . . 11
|
| 20 | 15, 19 | impbid 183 |
. . . . . . . . . 10
|
| 21 | 20 | ex 423 |
. . . . . . . . 9
|
| 22 | 21 | sps 1754 |
. . . . . . . 8
|
| 23 | 13, 22 | jca 518 |
. . . . . . 7
|
| 24 | 23 | a5i 1789 |
. . . . . 6
|
| 25 | bi1 178 |
. . . . . . . . . . 11
| |
| 26 | 25 | imim2i 13 |
. . . . . . . . . 10
|
| 27 | 26 | imp3a 420 |
. . . . . . . . 9
|
| 28 | 27 | adantl 452 |
. . . . . . . 8
|
| 29 | eleq1a 2422 |
. . . . . . . . . . . 12
| |
| 30 | 29 | adantr 451 |
. . . . . . . . . . 11
|
| 31 | 30 | imp 418 |
. . . . . . . . . 10
|
| 32 | bi2 189 |
. . . . . . . . . . . . . 14
| |
| 33 | 32 | imim2i 13 |
. . . . . . . . . . . . 13
|
| 34 | 33 | com23 72 |
. . . . . . . . . . . 12
|
| 35 | 34 | imp 418 |
. . . . . . . . . . 11
|
| 36 | 35 | adantll 694 |
. . . . . . . . . 10
|
| 37 | 31, 36 | jcai 522 |
. . . . . . . . 9
|
| 38 | 37 | ex 423 |
. . . . . . . 8
|
| 39 | 28, 38 | impbid 183 |
. . . . . . 7
|
| 40 | 39 | alimi 1559 |
. . . . . 6
|
| 41 | 24, 40 | impbii 180 |
. . . . 5
|
| 42 | df-ral 2620 |
. . . . . 6
| |
| 43 | 42 | anbi2i 675 |
. . . . 5
|
| 44 | 2, 41, 43 | 3bitr4i 268 |
. . . 4
|
| 45 | 44 | exbii 1582 |
. . 3
|
| 46 | df-eu 2208 |
. . 3
| |
| 47 | df-rex 2621 |
. . 3
| |
| 48 | 45, 46, 47 | 3bitr4i 268 |
. 2
|
| 49 | 1, 48 | bitri 240 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-cleq 2346 df-clel 2349 df-ral 2620 df-rex 2621 df-reu 2622 |
| This theorem is referenced by: reu3 3027 reu6i 3028 reu8 3033 |
| Copyright terms: Public domain | W3C validator |