New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rmo2 | GIF version |
Description: Alternate definition of restricted "at most one." Note that ∃*x ∈ Aφ is not equivalent to ∃y ∈ A∀x ∈ A(φ → x = y) (in analogy to reu6 3026); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i 3133. (Contributed by NM, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmo2.1 | ⊢ Ⅎyφ |
Ref | Expression |
---|---|
rmo2 | ⊢ (∃*x ∈ A φ ↔ ∃y∀x ∈ A (φ → x = y)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2623 | . 2 ⊢ (∃*x ∈ A φ ↔ ∃*x(x ∈ A ∧ φ)) | |
2 | nfv 1619 | . . . 4 ⊢ Ⅎy x ∈ A | |
3 | rmo2.1 | . . . 4 ⊢ Ⅎyφ | |
4 | 2, 3 | nfan 1824 | . . 3 ⊢ Ⅎy(x ∈ A ∧ φ) |
5 | 4 | mo2 2233 | . 2 ⊢ (∃*x(x ∈ A ∧ φ) ↔ ∃y∀x((x ∈ A ∧ φ) → x = y)) |
6 | impexp 433 | . . . . 5 ⊢ (((x ∈ A ∧ φ) → x = y) ↔ (x ∈ A → (φ → x = y))) | |
7 | 6 | albii 1566 | . . . 4 ⊢ (∀x((x ∈ A ∧ φ) → x = y) ↔ ∀x(x ∈ A → (φ → x = y))) |
8 | df-ral 2620 | . . . 4 ⊢ (∀x ∈ A (φ → x = y) ↔ ∀x(x ∈ A → (φ → x = y))) | |
9 | 7, 8 | bitr4i 243 | . . 3 ⊢ (∀x((x ∈ A ∧ φ) → x = y) ↔ ∀x ∈ A (φ → x = y)) |
10 | 9 | exbii 1582 | . 2 ⊢ (∃y∀x((x ∈ A ∧ φ) → x = y) ↔ ∃y∀x ∈ A (φ → x = y)) |
11 | 1, 5, 10 | 3bitri 262 | 1 ⊢ (∃*x ∈ A φ ↔ ∃y∀x ∈ A (φ → x = y)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 ∈ wcel 1710 ∃*wmo 2205 ∀wral 2615 ∃*wrmo 2618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-ral 2620 df-rmo 2623 |
This theorem is referenced by: rmo2i 3133 |
Copyright terms: Public domain | W3C validator |