| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > rr19.28v | Unicode version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3646 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| rr19.28v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 443 | 
. . . . . 6
 | |
| 2 | 1 | ralimi 2690 | 
. . . . 5
 | 
| 3 | biidd 228 | 
. . . . . 6
 | |
| 4 | 3 | rspcv 2952 | 
. . . . 5
 | 
| 5 | 2, 4 | syl5 28 | 
. . . 4
 | 
| 6 | simpr 447 | 
. . . . . 6
 | |
| 7 | 6 | ralimi 2690 | 
. . . . 5
 | 
| 8 | 7 | a1i 10 | 
. . . 4
 | 
| 9 | 5, 8 | jcad 519 | 
. . 3
 | 
| 10 | 9 | ralimia 2688 | 
. 2
 | 
| 11 | r19.28av 2754 | 
. . 3
 | |
| 12 | 11 | ralimi 2690 | 
. 2
 | 
| 13 | 10, 12 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |