| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > rr19.28v | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 3646 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) |
| Ref | Expression |
|---|---|
| rr19.28v | ⊢ (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ ∀x ∈ A (φ ∧ ∀y ∈ A ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 443 | . . . . . 6 ⊢ ((φ ∧ ψ) → φ) | |
| 2 | 1 | ralimi 2690 | . . . . 5 ⊢ (∀y ∈ A (φ ∧ ψ) → ∀y ∈ A φ) |
| 3 | biidd 228 | . . . . . 6 ⊢ (y = x → (φ ↔ φ)) | |
| 4 | 3 | rspcv 2952 | . . . . 5 ⊢ (x ∈ A → (∀y ∈ A φ → φ)) |
| 5 | 2, 4 | syl5 28 | . . . 4 ⊢ (x ∈ A → (∀y ∈ A (φ ∧ ψ) → φ)) |
| 6 | simpr 447 | . . . . . 6 ⊢ ((φ ∧ ψ) → ψ) | |
| 7 | 6 | ralimi 2690 | . . . . 5 ⊢ (∀y ∈ A (φ ∧ ψ) → ∀y ∈ A ψ) |
| 8 | 7 | a1i 10 | . . . 4 ⊢ (x ∈ A → (∀y ∈ A (φ ∧ ψ) → ∀y ∈ A ψ)) |
| 9 | 5, 8 | jcad 519 | . . 3 ⊢ (x ∈ A → (∀y ∈ A (φ ∧ ψ) → (φ ∧ ∀y ∈ A ψ))) |
| 10 | 9 | ralimia 2688 | . 2 ⊢ (∀x ∈ A ∀y ∈ A (φ ∧ ψ) → ∀x ∈ A (φ ∧ ∀y ∈ A ψ)) |
| 11 | r19.28av 2754 | . . 3 ⊢ ((φ ∧ ∀y ∈ A ψ) → ∀y ∈ A (φ ∧ ψ)) | |
| 12 | 11 | ralimi 2690 | . 2 ⊢ (∀x ∈ A (φ ∧ ∀y ∈ A ψ) → ∀x ∈ A ∀y ∈ A (φ ∧ ψ)) |
| 13 | 10, 12 | impbii 180 | 1 ⊢ (∀x ∈ A ∀y ∈ A (φ ∧ ψ) ↔ ∀x ∈ A (φ ∧ ∀y ∈ A ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∀wral 2615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |