| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > snprc | Unicode version | ||
| Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| snprc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elsn 3749 | 
. . . 4
 | |
| 2 | 1 | exbii 1582 | 
. . 3
 | 
| 3 | neq0 3561 | 
. . 3
 | |
| 4 | isset 2864 | 
. . 3
 | |
| 5 | 2, 3, 4 | 3bitr4i 268 | 
. 2
 | 
| 6 | 5 | con1bii 321 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-nul 3552 df-sn 3742 | 
| This theorem is referenced by: snex 4112 prprc2 4123 0nel1c 4160 snfi 4432 imasn 5019 dmsnopss 5068 fconst5 5456 ecexr 5951 frecxp 6315 | 
| Copyright terms: Public domain | W3C validator |