NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  snprc GIF version

Theorem snprc 3789
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc A V ↔ {A} = )

Proof of Theorem snprc
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 elsn 3749 . . . 4 (x {A} ↔ x = A)
21exbii 1582 . . 3 (x x {A} ↔ x x = A)
3 neq0 3561 . . 3 (¬ {A} = x x {A})
4 isset 2864 . . 3 (A V ↔ x x = A)
52, 3, 43bitr4i 268 . 2 (¬ {A} = A V)
65con1bii 321 1 A V ↔ {A} = )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-nul 3552  df-sn 3742
This theorem is referenced by:  snex  4112  prprc2  4123  0nel1c  4160  snfi  4432  imasn  5019  dmsnopss  5068  fconst5  5456  ecexr  5951  frecxp  6315
  Copyright terms: Public domain W3C validator