New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  spcimgf Unicode version

Theorem spcimgf 2932
 Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimgf.1
spcimgf.2
spcimgf.3
Assertion
Ref Expression
spcimgf

Proof of Theorem spcimgf
StepHypRef Expression
1 spcimgf.2 . . 3
2 spcimgf.1 . . 3
31, 2spcimgft 2930 . 2
4 spcimgf.3 . 2
53, 4mpg 1548 1
 Colors of variables: wff setvar class Syntax hints:   wi 4  wal 1540  wnf 1544   wceq 1642   wcel 1710  wnfc 2476 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861 This theorem is referenced by:  spcimegf  2933
 Copyright terms: Public domain W3C validator