| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > spcimgf | GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by Mario Carneiro, 4-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| spcimgf.1 | ⊢ ℲxA | 
| spcimgf.2 | ⊢ Ⅎxψ | 
| spcimgf.3 | ⊢ (x = A → (φ → ψ)) | 
| Ref | Expression | 
|---|---|
| spcimgf | ⊢ (A ∈ V → (∀xφ → ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spcimgf.2 | . . 3 ⊢ Ⅎxψ | |
| 2 | spcimgf.1 | . . 3 ⊢ ℲxA | |
| 3 | 1, 2 | spcimgft 2931 | . 2 ⊢ (∀x(x = A → (φ → ψ)) → (A ∈ V → (∀xφ → ψ))) | 
| 4 | spcimgf.3 | . 2 ⊢ (x = A → (φ → ψ)) | |
| 5 | 3, 4 | mpg 1548 | 1 ⊢ (A ∈ V → (∀xφ → ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 | 
| This theorem is referenced by: spcimegf 2934 | 
| Copyright terms: Public domain | W3C validator |