New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5bir | GIF version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 | ⊢ (ψ ↔ φ) |
syl5bir.2 | ⊢ (χ → (ψ → θ)) |
Ref | Expression |
---|---|
syl5bir | ⊢ (χ → (φ → θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 | . . 3 ⊢ (ψ ↔ φ) | |
2 | 1 | biimpri 197 | . 2 ⊢ (φ → ψ) |
3 | syl5bir.2 | . 2 ⊢ (χ → (ψ → θ)) | |
4 | 2, 3 | syl5 28 | 1 ⊢ (χ → (φ → θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr3g 260 oplem1 930 nic-ax 1438 19.30 1604 19.33b 1608 ax10 1944 necon4bd 2579 ceqex 2970 ssdisj 3601 pssdifn0 3612 ltfintr 4460 evenodddisj 4517 sfinltfin 4536 fun11iun 5306 funopfv 5358 dff3 5421 funfvima 5460 trrd 5926 peano4nc 6151 ncspw1eu 6160 fce 6189 |
Copyright terms: Public domain | W3C validator |