| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > dff3 | Unicode version | ||
| Description: Alternate definition of a mapping. (Contributed by set.mm contributors, 20-Mar-2007.) | 
| Ref | Expression | 
|---|---|
| dff3 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fssxp 5233 | 
. . 3
 | |
| 2 | fdm 5227 | 
. . . . . . . 8
 | |
| 3 | 2 | eleq2d 2420 | 
. . . . . . 7
 | 
| 4 | 3 | biimpar 471 | 
. . . . . 6
 | 
| 5 | eldm 4899 | 
. . . . . 6
 | |
| 6 | 4, 5 | sylib 188 | 
. . . . 5
 | 
| 7 | ffun 5226 | 
. . . . . . 7
 | |
| 8 | 7 | adantr 451 | 
. . . . . 6
 | 
| 9 | funmo 5126 | 
. . . . . 6
 | |
| 10 | 8, 9 | syl 15 | 
. . . . 5
 | 
| 11 | eu5 2242 | 
. . . . 5
 | |
| 12 | 6, 10, 11 | sylanbrc 645 | 
. . . 4
 | 
| 13 | 12 | ralrimiva 2698 | 
. . 3
 | 
| 14 | 1, 13 | jca 518 | 
. 2
 | 
| 15 | df-ral 2620 | 
. . . . . . 7
 | |
| 16 | dmss 4907 | 
. . . . . . . . . . . . . . 15
 | |
| 17 | dmxpss 5053 | 
. . . . . . . . . . . . . . 15
 | |
| 18 | 16, 17 | syl6ss 3285 | 
. . . . . . . . . . . . . 14
 | 
| 19 | 18 | sseld 3273 | 
. . . . . . . . . . . . 13
 | 
| 20 | 5, 19 | syl5bir 209 | 
. . . . . . . . . . . 12
 | 
| 21 | 20 | con3d 125 | 
. . . . . . . . . . 11
 | 
| 22 | pm2.21 100 | 
. . . . . . . . . . . 12
 | |
| 23 | df-mo 2209 | 
. . . . . . . . . . . 12
 | |
| 24 | 22, 23 | sylibr 203 | 
. . . . . . . . . . 11
 | 
| 25 | 21, 24 | syl6 29 | 
. . . . . . . . . 10
 | 
| 26 | 25 | a1dd 42 | 
. . . . . . . . 9
 | 
| 27 | pm2.27 35 | 
. . . . . . . . . 10
 | |
| 28 | eumo 2244 | 
. . . . . . . . . 10
 | |
| 29 | 27, 28 | syl6 29 | 
. . . . . . . . 9
 | 
| 30 | 26, 29 | pm2.61d2 152 | 
. . . . . . . 8
 | 
| 31 | 30 | alimdv 1621 | 
. . . . . . 7
 | 
| 32 | 15, 31 | syl5bi 208 | 
. . . . . 6
 | 
| 33 | 32 | imp 418 | 
. . . . 5
 | 
| 34 | dffun6 5125 | 
. . . . 5
 | |
| 35 | 33, 34 | sylibr 203 | 
. . . 4
 | 
| 36 | 18 | adantr 451 | 
. . . . 5
 | 
| 37 | euex 2227 | 
. . . . . . . . 9
 | |
| 38 | 37, 5 | sylibr 203 | 
. . . . . . . 8
 | 
| 39 | 38 | ralimi 2690 | 
. . . . . . 7
 | 
| 40 | dfss3 3264 | 
. . . . . . 7
 | |
| 41 | 39, 40 | sylibr 203 | 
. . . . . 6
 | 
| 42 | 41 | adantl 452 | 
. . . . 5
 | 
| 43 | 36, 42 | eqssd 3290 | 
. . . 4
 | 
| 44 | df-fn 4791 | 
. . . 4
 | |
| 45 | 35, 43, 44 | sylanbrc 645 | 
. . 3
 | 
| 46 | rnss 4960 | 
. . . . 5
 | |
| 47 | rnxpss 5054 | 
. . . . 5
 | |
| 48 | 46, 47 | syl6ss 3285 | 
. . . 4
 | 
| 49 | 48 | adantr 451 | 
. . 3
 | 
| 50 | df-f 4792 | 
. . 3
 | |
| 51 | 45, 49, 50 | sylanbrc 645 | 
. 2
 | 
| 52 | 14, 51 | impbii 180 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fun 4790 df-fn 4791 df-f 4792 | 
| This theorem is referenced by: dff4 5422 | 
| Copyright terms: Public domain | W3C validator |