NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ncspw1eu Unicode version

Theorem ncspw1eu 6160
Description: Given a cardinal, there is a unique cardinal that contains the unit power class of its members. (Contributed by SF, 2-Mar-2015.)
Assertion
Ref Expression
ncspw1eu NC NC Nc 1
Distinct variable group:   ,,

Proof of Theorem ncspw1eu
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nulnnc 6119 . . . . . . 7 NC
2 eleq1 2413 . . . . . . 7 NC NC
31, 2mtbiri 294 . . . . . 6 NC
43necon2ai 2562 . . . . 5 NC
5 n0 3560 . . . . 5
64, 5sylib 188 . . . 4 NC
7 vex 2863 . . . . . . . . . 10
87pw1ex 4304 . . . . . . . . 9 1
98ncelncsi 6122 . . . . . . . 8 Nc 1 NC
10 eqid 2353 . . . . . . . 8 Nc 1 Nc 1
11 eqeq1 2359 . . . . . . . . 9 Nc 1 Nc 1 Nc 1 Nc 1
1211rspcev 2956 . . . . . . . 8 Nc 1 NC Nc 1 Nc 1 NC Nc 1
139, 10, 12mp2an 653 . . . . . . 7 NC Nc 1
1413jctr 526 . . . . . 6 NC Nc 1
1514a1i 10 . . . . 5 NC NC Nc 1
1615eximdv 1622 . . . 4 NC NC Nc 1
176, 16mpd 14 . . 3 NC NC Nc 1
18 rexcom 2773 . . . 4 NC Nc 1 NC Nc 1
19 df-rex 2621 . . . 4 NC Nc 1 NC Nc 1
2018, 19bitri 240 . . 3 NC Nc 1 NC Nc 1
2117, 20sylibr 203 . 2 NC NC Nc 1
22 reeanv 2779 . . . 4 Nc 1 Nc 1 Nc 1 Nc 1
23 ncseqnc 6129 . . . . . . . . . . . 12 NC Nc
2423biimpar 471 . . . . . . . . . . 11 NC Nc
2524adantrr 697 . . . . . . . . . 10 NC Nc
26 ncseqnc 6129 . . . . . . . . . . . 12 NC Nc
2726biimpar 471 . . . . . . . . . . 11 NC Nc
2827adantrl 696 . . . . . . . . . 10 NC Nc
2925, 28eqtr3d 2387 . . . . . . . . 9 NC Nc Nc
307ncpw1 6153 . . . . . . . . 9 Nc Nc Nc 1 Nc 1
3129, 30sylib 188 . . . . . . . 8 NC Nc 1 Nc 1
32313adant2 974 . . . . . . 7 NC NC NC Nc 1 Nc 1
33 eqeq2 2362 . . . . . . . . 9 Nc 1 Nc 1 Nc 1 Nc 1
3433anbi1d 685 . . . . . . . 8 Nc 1 Nc 1 Nc 1 Nc 1 Nc 1 Nc 1
35 eqtr3 2372 . . . . . . . 8 Nc 1 Nc 1
3634, 35syl6bi 219 . . . . . . 7 Nc 1 Nc 1 Nc 1 Nc 1
3732, 36syl 15 . . . . . 6 NC NC NC Nc 1 Nc 1
38373expa 1151 . . . . 5 NC NC NC Nc 1 Nc 1
3938rexlimdvva 2746 . . . 4 NC NC NC Nc 1 Nc 1
4022, 39syl5bir 209 . . 3 NC NC NC Nc 1 Nc 1
4140ralrimivva 2707 . 2 NC NC NC Nc 1 Nc 1
42 eqeq1 2359 . . . . 5 Nc 1 Nc 1
4342rexbidv 2636 . . . 4 Nc 1 Nc 1
44 pw1eq 4144 . . . . . . 7 1 1
4544nceqd 6111 . . . . . 6 Nc 1 Nc 1
4645eqeq2d 2364 . . . . 5 Nc 1 Nc 1
4746cbvrexv 2837 . . . 4 Nc 1 Nc 1
4843, 47syl6bb 252 . . 3 Nc 1 Nc 1
4948reu4 3031 . 2 NC Nc 1 NC Nc 1 NC NC Nc 1 Nc 1
5021, 41, 49sylanbrc 645 1 NC NC Nc 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710   wne 2517  wral 2615  wrex 2616  wreu 2617  c0 3551  1 cpw1 4136   NC cncs 6089   Nc cnc 6092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102
This theorem is referenced by:  tccl  6161  eqtc  6162
  Copyright terms: Public domain W3C validator