| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > 19.29r2 | GIF version | ||
| Description: Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| 19.29r2 | ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x∃y(φ ∧ ψ)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.29r 1597 | . 2 ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x(∃yφ ∧ ∀yψ)) | |
| 2 | 19.29r 1597 | . . 3 ⊢ ((∃yφ ∧ ∀yψ) → ∃y(φ ∧ ψ)) | |
| 3 | 2 | eximi 1576 | . 2 ⊢ (∃x(∃yφ ∧ ∀yψ) → ∃x∃y(φ ∧ ψ)) | 
| 4 | 1, 3 | syl 15 | 1 ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x∃y(φ ∧ ψ)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 | 
| This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 | 
| This theorem is referenced by: 2eu6 2289 | 
| Copyright terms: Public domain | W3C validator |