New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.29r2 | GIF version |
Description: Variation of Theorem 19.29 of [Margaris] p. 90 with double quantification. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
19.29r2 | ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x∃y(φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.29r 1597 | . 2 ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x(∃yφ ∧ ∀yψ)) | |
2 | 19.29r 1597 | . . 3 ⊢ ((∃yφ ∧ ∀yψ) → ∃y(φ ∧ ψ)) | |
3 | 2 | eximi 1576 | . 2 ⊢ (∃x(∃yφ ∧ ∀yψ) → ∃x∃y(φ ∧ ψ)) |
4 | 1, 3 | syl 15 | 1 ⊢ ((∃x∃yφ ∧ ∀x∀yψ) → ∃x∃y(φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: 2eu6 2289 |
Copyright terms: Public domain | W3C validator |