NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.29r GIF version

Theorem 19.29r 1597
Description: Variation of Theorem 19.29 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
19.29r ((xφ xψ) → x(φ ψ))

Proof of Theorem 19.29r
StepHypRef Expression
1 19.29 1596 . . 3 ((xψ xφ) → x(ψ φ))
21ancoms 439 . 2 ((xφ xψ) → x(ψ φ))
3 exancom 1586 . 2 (x(φ ψ) ↔ x(ψ φ))
42, 3sylibr 203 1 ((xφ xψ) → x(φ ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  19.29r2  1598  19.29x  1599  exan  1882  equvini  1987  eu2  2229  intab  3956  imadif  5171  ncssfin  6151
  Copyright terms: Public domain W3C validator